Agla 2 Klausurzettel

Ringtheorie

- Sei $\varphi: \mathbb{Z} \to \mathbb{Z}$ Ringhomomorphismus. Dann ist $\varphi = 0$ oder $\varphi = \mathrm{id}$.
- Ideal: Unterring U von R mit $ur \in U, ru \in U$ für alle $u \in U, r \in R$
- Der Kern eines Ringhomomorphismus ist ein Ideal.
- Faktorring: Sei $\mathfrak a$ Ideal von R, dann ist $\frac{R}{\mathfrak a}$ der Faktorring von R nach $\mathfrak a$.
- · Ideale sind abgeschlossen unter Schnitt.
- Erzeugte Ideale: $(A) = \bigcap_{\substack{\mathfrak{a} \subset R \text{ Ideal} \\ A \subset \mathfrak{a}}} \mathfrak{a} \text{ für } A \subset R$
 - (A) besteht aus endlichen Linearkombination von Elementen von R der Gestalt $\{na, ra, ar, ras \mid n \in \mathbb{Z}; a \in A; r, s, \in R\}$
- Hauptideale werden von einem Element erzeugt
- Homomorphiesatz für Ringe: Sei $\varphi: R \to S$ Ringhomomorphismus, dann ist durch $\Phi: R / \text{Kern } \varphi \to S, r + \text{Kern } \varphi \mapsto \varphi(r)$ ein injektiver Ringhomomorphismus definiert.

Teilbarkeit

- Sei $a \in R \setminus \{0\}, b \in R$. Dann $a \mid b$, wenn $\exists c \in R$ mit ac = b
 - $r \mid 0$
 - $\bullet \ a \mid b \land a \mid c \Longrightarrow a \mid rb + sc \ \forall r, s \in R$
 - $a \mid b \land b \mid c \Longrightarrow a \mid c$
 - $\bullet \ a \mid b \Longrightarrow (b) \subset (a)$
- Nullteiler: $a, b \in R \setminus \{0\}$ mit ab = 0
 - Kürzungsregel: Ist $a \neq 0$ kein Nullteiler, gilt $ax = ay \Longrightarrow x = y$
 - ▶ In nullteilerfreien Ringen gilt: $a \mid b \Longrightarrow ar \mid br \ \forall r \in R \setminus \{0\}$
- Integritätsring: kommutativer nullteilerfreier Ring mit Eins
 - $\bullet \ a \mid a \ \forall a \in R \setminus \{0\}$
 - $1 \mid a \ \forall a \in R$
 - Einheitengruppe: $r \in R^{\times} \iff r \mid 1$
 - assoziierte Elemente: $a \sim b$, falls $\exists r \in R^{\times}$ mit a = br
 - gemeinsamer Teiler: $d \in R$ mit $d \mid a \land d \mid b$
 - ▶ ggT: $D \in R$ mit $d \mid D$ für alle gemeinsamen Teiler d von a und b. Alle ggT von a und b sind zueinander assoziiert.
 - ► teilerfremd: 1 ist ggT
 - Bezout: Sei $(a_1,...,a_s)=(d)$ Hauptideal, dann ist $\gcd(a_1,...,a_s)=d$ und es gibt $r_1,...,r_s\in R$ mit $d=\sum\limits_{i=1}^s r_ia_i$
 - ▶ Primelement: $p \in R \setminus (R^{\times} \cup \{0\})$ mit $p \mid ab \Longrightarrow p \mid a \lor p \mid b$. Zwei Primelemente sind zueinander assoziiert oder teilerfremd.
 - Seien $p_1,...,p_s,q_1,...,q_t$ Primelemente und $\prod\limits_{i=1}^s p_i = \prod\limits_{i=1}^t q_i$. Dann ist s=t und es gibt ein $\sigma \in S_s$ mit $p_i \sim q_{\sigma(i)}$
- Hauptidealring: Integritätsring, in dem jedes Ideal Hauptideal ist
 - $a \mid b \iff (b) \subset (a)$
 - $\bullet \ a \mid b \land b \mid a \iff (a) = (b) \iff a \sim b$
 - Euklid: Seien a,b teilerfremd und $ab \neq 0$. Dann gilt $a \mid bc \Longrightarrow a \mid c$ und $a \mid c \land b \mid c \Longrightarrow ab \mid c$
 - Jedes $a \in R \setminus (R^{\times} \cup \{0\})$ hat eine bis auf Assoziation eindeutige Primfaktorisierung.
 - R/(a) ist Körper \iff a ist Primelement

- ▶ Chinesischer Restsatz: Seien $a, b \in R$ teilerfremdn. Dann ist $R/(ab) \cong R/(a) \times R/(b)$ mit x + ab $(ab) \mapsto (x + (a), x + (b))$
- Sei K Körper, dann ist K[X] Hauptidealring.

Moduln

- Sei V ein K-Vektorraum und $\varphi \in L(V,V)$, dann ist V ein K[X]-Modul durch $(f,v) \mapsto f(\varphi)(v)$ erzeugte Untermoduln: $\langle A \rangle = \bigcap_{\substack{U \subset M \text{ Untermodul} \\ A \subset U}} U = \left\{ \sum_{j=1}^s r_j a_j \mid s \in \mathbb{N}, r_j \in R, a_j \in A \right\}$ mit $A \subset K$

M

- innere Summe: $\sum_{j\in J}U_j=\langle\bigcup_{j\in J}U_j\rangle=\left\{\sum_{j\in J'}u_j\mid u_j\in U_j, J'\subset J \text{ endlich}\right\}$ direkte Summe: $\sum_{j\in J'}u_j=0, J'\subset J \text{ endlich}\Longrightarrow u_j=0. \text{ Dann schreiben wir}\bigoplus_{j\in J}U_j$
- Faktormodul: Sei $U \subset M$ Untermodul, dann ist M/U ein R-Modul durch $(r, m+U) \mapsto rm + U$
- Modulhomomorphismus: Gruppenhomomorphismus $\varphi: M \to N$ mit $\varphi(rm) = r\varphi(m)$
 - ▶ Kern und Bild sind Untermoduln.
 - φ ist injektiv \iff Kern $(\varphi) = \{0\}$
- Homomorphiesatz für Moduln: Sei $\varphi:M\to N$ Modulhomomorphismus, dann ist durch $\Phi:$ $M/\mathrm{Kern}\ \varphi \to N, m+\mathrm{Kern}\ \varphi \mapsto \varphi(m)$ ein injektiver Modulhomomorphismus definiert.
- Annulator: Sei $a \in M$, dann ist $Ann(a) = \{r \in R \mid ra = 0\}$
 - $Ra \cong R / \operatorname{Ann}(a)$
- Sei $U \subset M$ Untermodul, dann ist Ann $U = \bigcap_{u \in U} \mathrm{Ann}(u) = \{r \in R \mid ru = 0 \ \forall u \in U\}$
 - Ann U ist Ideal in R
- Torsionselemente: Tor $M = \{a \in M \mid \operatorname{Ann}(a) \neq \{0\}\}$
 - ▶ Hat R Nullteiler, existieren nichttriviale Torsionselemente.
 - torsionsfreies Modul: Tor $M = \{0\}$
- Ist R Integritätsring, so ist Tor M Untermodul von M und M Tor M torsionsfrei.

Freie Moduln

- · lineare Unabhängigkeit
 - endlich: $m_1,...,m_s\in M$ sind linear unabhängig, wenn $\sum\limits_{i=1}^s r_im_i=0 \Longrightarrow r_i=0 \ \forall i=1,...,s.$ Achtung: $m \in \text{Tor } M \Longrightarrow m$ ist linear abhängig.
 - unendlich: $A \subset M$ ist linear unabhängig, wenn jede endliche Teilmenge linear unabhängig ist.
- Basis: $S \subset M$ mit $\langle S \rangle = M$ und S linear unabhängig. Existiert eine Basis, heißt M frei über S. Nur torsionsfreie Moduln können frei sein.
- äquivalent:
 - ► *M* ist frei über *S*
 - Jedes $m \in M$ lässt sich eindeutig als endliche Linearkombination von Elementen aus Sschreiben.
- $M=\bigoplus_{s\in S}Rs=\bigoplus_{s\in S}R$ Ist M endlich erzeugt und frei, ist $M\cong R^n.$
- - ▶ Ist R Hauptidealring, ist n eineindeutig bestimmt und heißt Rang von M.
- Sei M ein R-Modul, F freier R-Modul, und $\varphi: M \to F$ ein surjektiver Modulhomomorphismus. Dann existiert ein Homomorphismus $\psi: F \to M$ mit $\varphi \circ \psi = \mathrm{id}_F$ und $M = \mathrm{Kern} \ \varphi \oplus \psi(F)$
 - ▶ Ist $U \subset M$ Untermodul und M/U frei, gibt es einen Untermodul $V \subset M$ mit $M = U \oplus V$.

Moduln über Hauptidealringen